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The general theory of relativity is 100 years old

It attributes gravity to the curvature of spacetime and it has been ex-
tremely successful.

It has been tested with high precision in the solar system(e.g. Cassini,
Bertotti and coll.) and in binary pulsars, (R. Hulse and J. Taylor, The
Hulse—Taylor binary pulsar PSR1913+16).

It explains the expansion of the universe, predict black holes and gravita-
tional waves.

We have seen them: A gravitational wave signal from two merging black
holes




e The general theory of relativity is 100 years old (il 25 novembre 2015
Einstein illustré ai membri dell’Accademia Prussiana delle Scienze la sua
teoria della Relativita Generale e ne spiegava 'applicazione al fenomeno
della precessione del perielio di Mercurio. Quattro anni pia tardi una delle
predizioni della sua teoria- la deviazione dei raggi luminosi da parte del
campo gravitazionale solare fu confermata dal team di scienziati (guidato
da Sir Arthur Eddington) durante una eclisse solare totale (osservata
nell’isola Principe). Einstein divenne, nello spazio di una giornata, una
celebritd internazionale, una icona della fisica. Dalla meté degli anni 20
alla meta degli anni 50 la teoria giacque dormiente.

e [t attributes gravity to the curvature of spacetime and it has been ex-
tremely successful.

e It has been tested with high precision in the solar system(e.g. Cassini,
Bertotti and coll.) and in binary pulsars, (R. Hulse and J. Taylor, The
Hulse—Taylor binary pulsar PSR1913+-16).

e It explains the expansion of the universe, predict black holes and gravita-
tional waves.

e We have seen them: A gravitational wave signal from two merging black
holes



e The most fundamental aspect of GR is the blending of Space, Time and
Gravitation in the geometry of a 4—dimensional curved Spacetime.

e Gravity becomes geometry via Einstein’s equations that are imposed on
the geometric structure of spacetime.

Ric(g) — 59R(g) = 5ZET

Planet world-line

(a geodesics slightly
different from a
straight line)

e To understand Gravitational waves
we need to understand the nature
of Einstein equations

Physical 3-space

Planet orbit
(a highly curved trajectory)



The gravitational field has a peculiar feature
consequence of Newton’s second law

massa inerziale_—"
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massa gravitazionale accelerazione di gravita

The gravitational field is
locally eliminable.




With respect to a free—fall e}evator: i
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In a free—fall elevator

the equations of motion
take the same form they
have in an inertial frame in
absence of gravity

Einstein’s equivalence principle:

The laws of physics take the same
form in all non—rotating free—fall

local frames : The LIFs /
X Suo\o

A Local Inertial Frame: LIF
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In each local

inertial frame
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Special Relativity

Classical Physics in
absence of gravity

The local inertial frames
can accelerate with respect
to each other.

The relative acceleation
between two local inertial
frames is generated by

g G(r),

(Tidal Forces)

_ T
Tidal Forces: signature of the G (r =- — T
existence of non constant
gravitational fields.
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In Special Relativity the trajectories of photons and free particles are straight
lines. However the Equivalence Principle implies that light, (and any physical
motion), in presence of a gravitational field, follows a curved path.

traiettorie spaziotenlnporali
di particelle libere (?.g. pianeti)

orbite spaziali di particelle
|

Porzione di SPAZIOTEMPO
nell'intorno di una stella

This is a strong indication that the bending of light rays in presence of a grav-
itational field is not a peculiar property of light, but rather of the interaction
between the geometry of spacetime and its mass—energy content: Spacetime is
Curved.

How can we describe the curvature of spacetime?



(1) (2)
particelle in caduta
libera verso una stella

 geodetiche
/spaziotemporali

Se osserviamo il moto relativo

di due particelle in caduta libera

verso una stella, le corrispondenti
geodetiche spaziotemporali finiranno

per incontrarsi. Tanto piu rapidamente
lo fanno tanto piu intensa e la curvatura.

SPAZIOTEMPO
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la separazione s(x) fra le geodetiche (rette)
cresce linearmente con la distanza s(x)= X 0¢

(0, p+5¢)

E(x)=r1 sin(x/r) ¢

con la distanza

a separazione &(x) fra le geodetiche
(meridiani) non cresce linearmente

Recall that in space
geometry we have:

Relative acceleration
between two geodesics
(geodesic deviation):

On the plane: d';gc) = 09,
d® s(x) —0
dx? ’

On the 2—sphere of radius r:

digf) = d¢ cos (£)
T = — % in (2)
= —%&(x)
— _]CGauss 6(55)



The situation in a curved spacetime, as compared to the Riemannian case, is
similar

Nello Spaziotempo di Minkowski
la separazione s(t) fra le geodetiche (rette)
cresce linearmente con il tempo proprio

The relative acceleration
between two close spacetime
geodesics is given by

T = ~R(Euw)u

dT?

R(&,u)u : Spacetime Riemann
tensor

% In uno spaziotempo curvo la separazione
” &(7) fra le geodetiche spaziotemporali non
cresce linearmente con il tempo proprio t



Whereas is simple to understand how, from the metric
g = ds? = r? (d92 + sin® ngbz) we can get infos on
intrinsic geometry of the sphere:

\\ C(x) = 2mr sin(x/r)

Length of a meridian segment:
x(0) = foa ds|p=const. =T foe do’ = r0.

Circumference of a parallel of latitude 6
(hence of "radius” x(0)):

C(x(0)) = Ozﬂ ds|g = r sin (%9)) OQW d¢
= 27 r sin (@)

It is more difficult to understand what giving a spacetime metric means.



Recall that in Minkowski spacetime, the metric n is defined by the spacetime
separation between the event O = (0,0) and the infinitesimally close event

E = (dx, cdt). In dimension 2, for instance, we write

@ ct A

n:= dz? — c?dt?
— dﬂj,2 L C2 dt/2

(dx, cdt)

(dx’ cdt’)

In dimension 4 we get Minkowski metric

ni=dr@dr+dy®dy+dz:®dz —c*dt @ dt
often writen in an idiosyncratic notation as

ds® = dx? + dy® + dz? — c?dt?




Example: Let us assume that the spacetime metric is given by
g ="ds* = h(x,y,z,t)> (dm2 + dy? + sz) — N2(z,y, z,t) dt*

How do we interpret it geometrically?

(1): The local geometry of time: Proper time along a spacetime curve at con-
stant (x,y, 2):

T(t;x,y,2) = fot V —ds%|(z.y.2) = f; N(x,y,z,t)dt’

(i1): The time—varying geometry of space
Metric of the 3-dimensional space at constant ¢:

(X,y,Z)z cost. T(t,X,y,Z) =
tempo proprio

d82|t:c:ost — h(:]}, Y, =, t)z (d$2 + dy2 +d22)

hence all distances in the 3-dim
physical space locally change with Spons
(proper) time (7).



The Einstein equations connect
the spacetime geometry to the How do we get them?
distribution of mass—energy

Whereas the constant gravitational fields
are not ”observable”, the non uniform (tidal) fields are

g(r) = —gradU

where U = gravitational
potential

d> NF k nTi

0’ U
where Eik = Dzt oLk

is the (Newtonian) tidal
forces tensor.




In Newtonian theory, the connection between tidal forces and
sources of the gravitational field is obtaines by ”averaging” over
the tidal forces along the distinct spatial directions:

Eg;x—l_Eyy—l_Ezz: (8:]32_|_ 2+62)U:47TG/0

This is the Poisson equation connecting the Newtonian
graitational field g = —gradU to the matter density distribution p.

AU=4nGp

g(r)=-grad U




There is a natural analogy between the geodesic deviation equation describing
the relative acceleration between geodesics due to the presence of curvature

R(-, ")~

de(r) d>2 N+ _ k ATi
and the equation which describes the relative acceleration generated by tidal
forces in Newtonian theory, represented by the tidal tensor E(-,-)

spacetime curvature:
Tilting of the lightcones

averaging curvature
along spacetime directions



This analogy suggests that in the same way the average of E(-,-) provides the
connection with the sources of gravitational field in the Newtonian theory, a
suitable ”average” of the spacetime tidal deviations might provide the connec-
tion between spacetime curvature and mass—energy.

EINSTEIN EQUATIONS: &g}

Ric(g) — 9 R(g) = & T(g,p,p,...)

where T'(g, p, p, . ..) describes
the distribution of mass—energy

evolving in spacetime according to
V*T;. = 0.

where 87;4(; has an exceedingly small

numerical value ~ 2 x 10~*® s?ecm = 1g~
if compared to other physical quantities
occurring in the physics of sources. =\ Spacetime tidal forces
on an array of LIFs.

1




Understanding Einstein equations:
Make comparison with Maxwell electromagnetism

e g,i.: 4—dimensional Spacetime metric = e.m 4-potential A; = (/T, b);

o gg?: 3-dimensional metric of physical space = e.m vector potential A;

e N: local geometry of time = e.m scalar potential ¢;




‘ EINSTEIN EQUATIONS '

RB) 4+ k2 - K4 K® = 1670

divB =0 — Vu(trpK) = 8nJ,
9B 89(%)
oB _ b _ _INK
et curl B It ab
OF 1
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As in any theory incorporating local Lorentz invariance, Einstein equations im-
ply the existence of causal propagation of disturbances of the relevant fields, in

this case of the spacetime metric (potential) and curvature (field): The Gravi-
tational " Waves” .



A Gravitational wave, (according to GR):
A Ripple in the curvature of spacetime propagating with the speed of light

Typically these ripples propagate on a background spacetime with a slowly
changing spacetime curvature generated by the cosmological distribution of
mass—energy.
Ripples in the curvature of (cosmological spacetime)
e The backgound curvature is
characterized by two length
scales: R and L;

e Gravitational Waves are
characterized by one length

scale: 2i
T
e The” separation” of spacetime Radius of curvature of Background spacetime

curvature into a Background
Curvpger and a Wave Part
Curvgw depends critically on

, \ 4 _______________
2 << L R VaVaVaVaVaVaVaVaVa\

(Reduced) wavelength of gravitational Wave 2&
-



The length scales of a (potential) source of gravitational radiation

e [: The size of the source;

e 1,: Gravitational radius of the source, (= 2M, twice the "mass” of the

source in geometrical units G = 1 = ¢. Explicitly ry = 253;—2M),

o %: Reduced wavelength of gravitational waves emitted by the source.




Regions of interest around a source of gravitational radiation

Source region: r < L;

Strong field region: r < 57, (if strong field source, i.e. if 5ry > L);

Weak field near zone: L < r, bry << r, r << %;

Wave generation region(s): Source, Strong field region, weak—field near
ZOne;

Weak-field near zone

. Strong field region [
Induction zone Distant wave zone

Local wave zone




e Local wave zone: the region in which the GW generated by the source
are weak outgoing ripples on a background spacetime and the effect of
the background curvature on the wave propagation are negligible. Moving
toward the wave generation region, the ripples cease to be waves and be-
come near zone field (r < %) When r >~ r, the source produces redshift
and the background curvature distorts the wavefronts and backscatters
the wave.

e Conversely when we move towards the distant wave zone there can be a
phase shift build up generated by the gravitational field of the source and
a potentially significant curvature background effect due to other sources
(e.g. cosmological).

e The existence of a local wave zone allows a separation between the wave
generation mechanism and wave propagation (typically addressed in the

distant wave zone). local
Ocal zone

distant zone




In the distant wave zone we can assume that the spacetime geometry is nearly
Minkowskian: ¢;. = 7;x + hix, where the (tensor) field h;; can be thought of as
a small perturbation of the Minkowskian spacetime geometry:

— ds? = g = dx® + dy® + dz? — Adt* + hydxtda”

ic Minkowski dinates
tic Minkowskian coor
asympto



Again, it is worthwhile to make a comparison with electromagnetism:

(i): The symmetric 2-tensor h := h;pdx’dx”, describing gravitational pertur-
bations, plays here the role that the 4-potential A = (A, ¢) plays in electro-

magnetism.

(ii): Both are Lorentz equivariant quantities: h = hjpdz’dz® can indeed
be interpreted as a symmetric 2—tensor in Minkowski spacetime; whereas A =

(A, ¢) is a Lorentz 4—vector.

(ii): Both are NOT uniquely defined: they are characterized up to a gauge

trasformation:

A; — ﬁz =A; + g;b,,;, where 1) is a scalar function.

hij — E@k = R + gi;; gfc‘;, where &, is a (Lorentz) vector field.




In electromagnetism, by imposing the Lorenz gauge (Ludvig Valentin L.!)

a?;i A* = 0, the Maxwell equations yvields the wave equation

0? 02 9% 1 02 47
He di = (@+8y2+8z2 c28t2) Ai = =i

Similarly, and quite remarkably, in the distant wave zone the Einstein equations,
by imposing the gauge condition % hk = 0, (the harmonic gauge), reduce to
the standard wave equation

~ 0> 0? 0?
|:Ic h/’ik = (8332 + 8y2 + 922

where /h\ﬂik = hm — %h Nik -

Hence, the tensor field h, describing |
the perturbations of the spacetime
geometry in the distant wave zone
can be interpreted as a free field
(massless and with spin 2) evolving
on a flat Minkowskian spacetime




Since the perturbation field h is NOT gauge invariant, there is the possibility
that the solutions of the wave equation L. h;, = — —1-6-5%@- Tis, (with 0; h** = 0),
are just Gauge Waves of no physical relevance. However, along with the wave
evolution of h;;, we also get a wave equation for the associated curvature tensor

0? 0? 0? 1 0?
Ue Rijrr = (8x2 + 7 to3 0_2@) Rijki = 0, O

(here written in vacuum, for simplicity.) R;;r is a gauge invariant cdxtity,

e

hence we have Curvature Waves associated with h;z.

local wave zone




To understand the nature of /i;, let us consider a plane gravitational wave trav-
elling in vacuum along the z—direction, (set ¢ =1):

Rallf)‘

Ra1ap

ds” = du® + (1= hy)dy* + (L4 hyy)d2® = 2hydydz - cdt*.

Such a wave is described by the 10 functions /ﬂ@k(t — )

On them we have to impose the 4 conditions represented by the harmonic
gauge % h;r. = 0. This leaves us with 6 functions.

We still have a residual gauge trasformation at our disposal, h;; ——
hir + Oine + Oxn; where the vector field 7); satisfies the homogeneous wave
equation [1.7; = 0. Again 4 functions at our disposal to make an overall
balance

Hence, the physical information (the Degrees of Freedom describing the

spacetime curvature wave field h;), is contained in just 2 functions:

X A

hyy = —h., and hy, = h,y,all others h;. can be set to 0.




The relevant part of /h\, describing the spacetime curvature waves, is the trace-

free and divergence—free part: hl! such that n®hl! = 0,and nab%th = 0.

The two independent fields 477 give rise to mareal forces on a cloud of free falling
matter test particles according to the following two—polarizations pattern:




The h'?—-induced relative mareal displacement 2% on free—falling
test particles can be measured by interferometric techniques.

photodetector



But how large the h’” mareal relative displacement 2% can be?

To answer we need to look into the mechanism of gravitational
wave generation, (in the weak—field case!)

A

As in electrodynamics, the wave equation L. h;, = — 161G can be

C4
explicitly solved as a retarded potential problem:

L P = (1, ct)
—> < ﬁ
I

/ |

N 1G [ [T
‘ -~ hik(p) = —— e

- AASY
c Eret r

" “J anl
\ | e 2L
| |

The Quadrupole:

\ T R )
| ik ~o 2G d o
s o 4 W) = = g J, et v



Example: A system of two
. stars of mass M rotating,
with angular velocity w,
with respect to a common
center, on a circular orbit
of radius 2a.

Ll S

B 8G M a?w?
o 4

( cos 2wt  sin 2wt )

sin 2wt — cos 2wt

c'r



8G Ma’w? -
1

The smallness of the numerical factor is scaring!

e The number: Typical masses of a neutron star (1.4 My) at the typlcal
distance of the Virgo Cluster of Galaxies (50 Mpc,
i.e.r ~ 4.6 x 1023 m), yields a gravitatational
wave amplitude 2% of the order of 1072V,

e But Beware! The energy carried by the waves can be large:
A typical formula for the Energy Flux, 7.e. the energy
carried by a gravitational wave, of amplitude h and frequency
v, through a unit area per unit time is

3
T 5y
.73_—4Gyh.

e However! The energy of a GW wave is well defined only as an average
over a region of space with size (quite) larger than the wavelength of the
wave, and over a time larger than the period of the wave. Difficult to
transfer significant GW energy to matter and to an antennal



Hence, Bruno had good reasons to propose to Kip Thorne the following bet:




